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Abstract  

Humanitarian relief transportation and mass fatality management activities are the most strenuous tasks after a 

natural or artificial disaster. A feasible and realistic transport model is essential for accomplishing the tasks in a 

planned way. Covering Salesman Problem (CSP) is a variant of Traveling Salesman Problem (TSP) which has been 

used in many application areas, including disaster management. In this paper, we consider a bi-objective CSP in 

an uncertain environment where Interval Type 2 fuzzy numbers represent the costs of the edges. A new local 

search technique is introduced in the memetic algorithm, which has been used to solve the problem. A 

computational experiment on a set of instances indicates the effectiveness of the introduced local search 

technique along with the proposed methodology. 

Keywords: covering salesman problem, memetic algorithm, local search, uncertainty, fuzzy numbers 

1. Introduction 

Humanitarian relief transportation and mass fatality management activities can be planned successfully with a 

feasible and realistic transport model. These two tasks can be modeled using Covering Salesman Problem (CSP), 

and hence, in the recent past, researchers have paid huge attention to design methodologies for solving different 

variants of CSP (Current and Schilling, 1989; Jensen, 1999; Shaelaie et al., 2014).  Here, CSP can be defined as given 

a set of vertices in a given graph (𝑉, 𝐸), the goal of CSP is to minimize the cost of the tour by starting the journey 

from a node (i.e., depot), traversing a subset of vertices (i.e., facilities) which cover the given number of vertices 

(i.e., customers) which is shown in Figure 1. A customer is covered, if it comes within a pre-defined distance of a 

facility point on the tour. Uncertainty, again, is unavoidable while solving real world problems. Therefore, 

designing methodologies for CSP in an uncertain environment is also an important task. In this work, using interval 

type-2 fuzzy set (IT2FS), we propose a methodology for transforming the uncertain CSP to a deterministic one and 

then solving using the memetic algorithm. 

After a rigorous study on Traveling Salesman Problem (TSP) (Shaelaie et al., 2014), many people have 

contributed to covering salesman problem (CSP). The covering salesman problem (CSP) (Current and Schilling, 
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1989) is a variant of traveling salesman problem where the goal is to find a tour of minimum length cycle traversing 

a subset of vertices (i.e., nodes in a graph) such that every other node which is not included in the tour and is 

bounded by a pre-determined distance (radius) from at least one visited node. Many methodologies have been 

developed to solve CSP, but all the models need more realistic approaches for performing relief activities after a 

disaster, rural health care delivery and emergency vaccination. Aftermath a disaster, it is seen that the relief 

activities have been conducted without proper planning and design of transportation model, resulting in a huge 

demise of lives. In humanitarian relief transportation and mass fatality management activities (Jensen, 1999), an 

efficient transportation model for tackling such strenuous activities can save many lives. Due to a lack of time and 

adequate resources, it is difficult for the relief team to reach all the places. Hence, traversing a subset of the places 

with gathering nearby people/victims who lie within a pre-determined distance makes the process easy to 

accomplish. Here, a place is considered a node or city. The CSP can also be applied in post-disaster mass fatality 

management, humanitarian relief transportation, rural health care delivery, telecommunication network (Jensen, 

1999), etc. The travelling plan usually considers more than one objective considering distance and survivability, 

both attributes. 

 

 
Figure 1. An example path of Covering Salesman Problem 

 

In this paper, we have suggested an approach more realistic than existing models of CSP. Here, we have 

considered the distance between two nodes and the survivability point of the location after travelling from a 

particular place. The distance and survivability scenario may come after a natural disaster where the distance and 

survivability are sometimes conflicting. 

The rest of the paper is organized as follows. The preliminaries have been presented in Section 2. The literature 

study on various variants of CSP has been presented in Section 3. Section 4 contains the problem formulation and 

mathematical model of the proposed problem. The methodology is given in Section 5. Section 6 contains the 

results and analysis of the results. Finally, the work has been concluded in Section 7. 

2. Literature Review 

The covering salesman problem was initially introduced in 1980 through the thesis of Current, and in 1989, the 

first heuristic for the Constraint Satisfaction Problem (CSP) was proposed. Current and Schilling (1989) presented 

a heuristic approach to tackle the covering salesman problem). This problem aims to find the shortest visiting cycle 
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that covers a subset of nodes within a predefined distance. The research was extended in Arkin and Hassin (1994) 

where the geometric constraints of the covering salesman problem were demonstrated. The study includes 

bounded error ratio analysis and polynomial time approximation algorithms. To overcome the limitations of 

integer programming highlighted in Patterson and Rolland (2003), the authors suggested creating several sub-

graphs from a main graph.  

Numerous studies have explored various variants of the Traveling Salesman Problem (TSP), such as the pickup-

and-delivery TSP (Zhao et al., 2009), multi-depot multiple TSP (Ghafurian and Javadian, 2011), online TSP (Wen et 

al., 2012), clustered TSP (Bao and Liu, 2012)., generalized TSP (Laporte, 1996; Karapetyan and Gutin, 2012), and 

more. These TSP variants are extensively discussed and described in Gutin and Punnen (2006). In addition, the 

Covering Tour Problem (CTP) (Gendreau et al., 1997) is also addressed in the research, considering different class 

constraints. A branch and cut algorithm with polyhedral properties is employed to tackle CTP, even for large 

instances with up to 600 vertices. The algorithm classifies the vertices into three groups: S1, S2, and S3. Group S1 

comprises the vertices visited by the tour, group S2 contains the vertices covered by the tour, and group S3 

represents the remaining vertices that are neither visited nor covered by the tour. Furthermore, the algorithm 

incorporates the Lin–Kernighan heuristic (Lin and Kernighan, 1973) to improve the arrangement of the visited 

vertices. 

A heuristic algorithm utilizing Integer Linear Programming (ILP) was created for the CSP (Wu and Mendel, 2011). 

The algorithm starts with an initial feasible solution and employs a destroy-and-repair approach to enhance the 

tour length. By removing certain vertices from the tour and reassigning them, a new feasible solution is formed 

through the optimization of an ILP-based model. The results demonstrate that the ILP-based method exhibits 

greater efficiency than other algorithms for solving the CSP. 

A CSP variation was suggested in Golden et al. (2012), where the generalisations of CSP are reviewed while 

relaxing the visiting or covering of vertices. More than one vertices may be visited. The authors considered several 

rural healthcare delivery models that include overnight stays. Shaelaie et al. (2014) put out two mathematical 

solutions to the problem of covering a specified number of nodes. The Memetic Algorithm (MA) and Variable 

Neighbourhood Search (VNS) meta-heuristic algorithms have also been suggested, and their findings have been 

compared with those of simulations of mathematical models and results from current data using IBM CPLEX. 

Salari et al. (2015) developed a hybrid heuristic approach for CSP that blends Ant Colony Optimisation (ACO) 

with a CSP dynamic programming heuristic. The starting node in this technique is a dummy vertex that does not 

cover any other nodes, and the tour concludes by covering a subset of nodes to supply the required demand.  

Ozbaygin et al. (2016) designed a branch and cut technique to maximize coverage demand within a time limit, and 

the demand of the vertex is fully covered if it is part of the tour and half covered if it is not part of the tour but 

close to the traversed vertex. 

A green vehicle routing problem has been solved using a revised intelligent algorithm where the goal is to use 

less fuel while completing the tour (Wang et al., 2019). The work Du et al. (2019) has drawn a conclusion about 

making healthy travel for tourism which is a recent thrust point for many researchers. Similar works have been 

done by some researchers where different domains of travelling salesman problems and vehicle routing problems 

have been discussed (Ni et al., 2017; Avila-Torres et al., 2018; Rainer et al., 2018; Wu et al., 2019) and also in Zhang 

et al. (2019), fuzzy logic has been used for multi-attribute decision making. 

Another procedure for addressing different objectives can be handled with the weighted sum method, as 

described in Kim and Weck (2004) and Stanimirovic et al. (2011). Through the utilization of this method, every 

point obtained represents a Pareto optimal solution for the multi-objective optimization problem at hand. The 

weights employed within this approach hold essential importance as they influence preferences, the Pareto 

optimal set, and objective-function values. Previous research Marler and Arora (2010) has identified the factors 

that determine the resulting solution point when specific weights are used. Furthermore, significant drawbacks 
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have been recognized concerning the upfront expression of preferences, leading to guidelines that prevent the 

method's indiscriminate application. 

The work Tripathy et al. (2021) proposes a novel variant of the classical travelling salesman problem (TSP), which 

is called the multi-objective covering salesman problem with 2-coverage (MOCSP-2). In MOCSP-2, the objective is 

to find a minimum cost Hamiltonian cycle that visits all the nodes in the graph while satisfying two additional 

constraints. First, each node should be covered by at least two different cycles, and second, the length of the 

longest cycle should be minimized. The authors propose a mathematical model for MOCSP-2 and show that it is 

an NP-hard problem. In another work, Biswas et al. (2022), the authors propose a mathematical model for MOCS, 

which involves multiple objectives, including minimizing the cost, minimizing the number of cycles, and maximizing 

the coverage of nodes. 

For IT2FSs, ranking techniques, similarity and uncertainty metrics are crucial ideas. Authors from different fields 

have offered numerous ranking systems. Karnik and Mendel (2001) have suggested a centroid-based ranking 

approach. For solving fuzzy multiple attributes group decision-making situations with greater adaptability and 

intelligence, Lee and Chen (2008) introduced a new ranking mechanism. This ranking system, which is based on 

trapezoidal IT2FSs, has been utilised for this work. 

A recent study by Qin and Liu (2015) introduced fundamental concepts and operational laws regarding Interval 

Type-2 Fuzzy Sets (IT2FSs). The study also presented three types of ranking value formulas for evaluating IT2FSs 

using arithmetic average (AA), geometric average (GA), and harmonic average (HA) operators. Additionally, the 

desirable properties of these ranking value formulas were discussed. Building upon these properties, the notion 

of combined ranking value was introduced, and a new interval type-2 fuzzy entropy was further developed. The 

new entropy measure employed the trigonometric sine function to quantify the uncertainty present in IT2FSs. 

3. Mathematical Modeling 

Mathematical model and the notations for CSP with radius are given below: 

𝐺 =  (𝑉, 𝐴):  A directed graph   

𝑉: Set of vertices     

𝐴: Set of edges   

𝑊: Set of customers  

𝐹: Set of Facilities  

(𝑖, 𝑗): An edge between the vertices i and j 

𝑐𝑖𝑗  : Cost (or length) of the edge(𝑖, 𝑗) 

𝑑𝑗: Demand covered by the facility j 

D: Total demand 

λ𝑖𝑗: Continuous variable presenting the load of the tour 

 

𝛿𝑖𝑗 = {
 1 if edge (𝑖, 𝑗) is visited by the tour,    
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                              

 ∀(𝑖, 𝑗) ∈ 𝐴                       (1) 

 

𝑧𝑖𝑗 = {
 1 if the customer 𝑖 is assigned to the facility j,         
 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                      

∀(𝑖, 𝑗) ∈ 𝐴                     (2) 

 

∆𝑖= {
 1 if vertex 𝑖  is visited,                      
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                       

    ∀(𝑖) ∈ 𝑉                                    (3) 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑖𝑗𝛿𝑖𝑗(𝑖,𝑗)∈𝐴 , 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑡𝑖𝑗𝛿𝑖𝑗(𝑖,𝑗) ∈𝐴                                     (4) 
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Subject to: 

 

∑ 𝑧𝑖𝑗∀ 𝑗 ∈𝐹∪{0} = 1      ∀𝑖 ∈  𝑊                                                                                                  (5) 

 

∑ 𝑑𝑖𝑧𝑖𝑗∀𝑖∈ 𝑊 = 𝐷      𝑗 ∈ 𝐹 ∪ {0}                                                                                              (6) 

 

∑ 𝛿0𝑗𝑗∈𝐹∪{0} = 1                                                                                                                           (7) 

 

∑ 𝛿𝑖𝑗𝑗∈𝐹∪{0} =  ∑ 𝛿𝑗𝑖𝑗∈𝐹∪{0}          ∀ 𝑖 ∈ 𝐹 ∪ {0}                                                                       (8) 

 

𝑧𝑖𝑗 ≤ ∑ 𝛿𝑘𝑗𝑗∈𝐹∪{0} + ∑ 𝛿𝑗𝑘𝑗∈𝐹∪{0}           ∀ 𝑖 ∈ 𝑊, 𝑗 ∈  𝐹, 𝑖 = 1 … 𝑛                      (9) 

 

∑ λ0𝑗𝑗 ∈ 𝐹 = ∑ ∑ 𝑧𝑖𝑗𝑗∈𝐹∪{0}𝑖∈𝑊                                                                                                       (10) 

 

∑ λ𝑗𝑖𝑗 ∈ 𝐹∪{0} −  ∑ λ𝑖𝑗𝑗 ∈ 𝐹∪{0} = ∑ 𝛿𝑗𝑖𝑗 ∈ 𝐹∪{0}             ∀ 𝑖 ∈ 𝐹 ∪ {0}                                        (11) 

 

∑ λ𝑗0𝑗 ∈ 𝐹 = 0                                                                                                                               (12) 

 

𝛿𝑖𝑗 ∈ {0,1}     ∀ 𝑖, ∈  𝐹 ∪ {0}                                                                                                  (13) 

 

𝑧𝑖𝑗 ∈ {0,1}      ∀ 𝑖 ∈ 𝑊, ∀ 𝑗 ∈  𝐹𝑖                                                                                    (14) 

 

λ𝑖𝑗  ≥ 0            ∀(𝑖, 𝑗) ∈  𝐹 ∪ {0}                                                                                           (15) 

 

The objective function (4) is to minimize the tour distance and survivability. Once a customer is assigned to a 

facility, then that customer cannot be assigned to any other facility, even if it lies within the radius of other 

facilities. Constraint (5) ensures that each customer 𝑖 ∈ 𝑊is assigned only to one facility 𝑗 ∈ 𝐹. Total demand 𝐷 

must be met by the facilities as shown in constraint (6). Constraint (7) ensures that the tour must start from the 

depot and the in-degree and out-degree constraints for each𝑖 ∈ 𝐹 ∪ {0} are represented by the constraint (8). 

Constraint (9) shows that the customer 𝑖 is allocated to facility  𝑗, if 𝑗 is visited by the tour. λ𝑖𝑗represents the pre-

specified tour load which is the total number of nodes to be covered by the tour. Each node is assumed to be a 

single point of load. Hence, tour load is the pre-specified value 𝐷 at the depot and it gradually decreases, finally 

making it zero when the last facility point is met with the depot. Constraints (10), (11) and (12) model the sub-

tour elimination constraints. Model variables are depicted in (13) to (15). 

4. Methodology 

We have developed a memetic algorithm and applied it to the randomly created travel distance and survivability 

during travel between cities (algorithm 1). The memetic algorithm has used a basic evolutionary algorithm 

structure combined with local search techniques. It includes the GA steps with 2-opt (Lin and Kernighan, 1973) 

and dropS-and-add (drop a segment) as two local search techniques. We propose the dropS-and-add approach in 

this work. We have considered the cost in terms of crisp values and then applied our memetic algorithm with 

interval type-2 fuzzy numbers in uncertain environments. While computing the fitness calculation, the bi-objective 

version of CSP, considering a weighted sum model, we considered having two objectives: cost and survivability 

which are presented below. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐹 = 𝑤1𝑓1 +  𝑤1𝑓1          (16) 

 

Where 

- F is the total value out of two objectives, 

- 𝑤1 𝑎𝑛𝑑 𝑤2 are the weights for two objectives and  𝑤1 +  𝑤2 = 1, 

- 𝑓1 = Cost as first objective,   

- 𝑓2 = Survivability as second objective. 

 

Algorithm 1. Memetic Algorithm 

1. Set the parameter values 

2. Construct initial population 

3. Evaluate each fitness value.  

4. while termination is false do 

5.  Selection 

6.             Crossover operation. 

8.             Mutation operation. 

9. Apply local search on 10% chromosome of the population 

10.              Evaluate each fitness value. 

11. end 

4.1. Parameter Setting 

Parameter values are given in Table 1, where 𝑁𝑝 represents the population size, 𝑇𝑁 represents the number of 

nearest uncovered customers to be considered while choosing the facility for the next visit, 𝐿𝑐 is the percentage 

of chromosomes where the local search method has been applied. If there is no improvement continuously for λ 

times, the algorithm shall be terminated. For the proposed algorithm, 𝑃𝑐 is the crossover probability and 𝑃𝑚 is the 

mutation rate. 𝑤1 and 𝑤2 are weights taken for accomplishing both the cost and the survivability factor in 

weighted sum model.  

Table 1. Parameter values used in proposed multi-objective algorithm 

Np 𝑇𝑁 𝑃𝑐 𝑃𝑚 𝐿𝑐 Λ 

200 5 0.8 0.07 10 50 

4.2. Initial population 

Here, the first facility is taken randomly. To choose the next facility, 𝑇𝑁number of uncovered nodes are 

considered, out of which one node is randomly selected as the next facility point to be visited. These 𝑇𝑁 number 

of nodes are considered from the uncovered nodes. The method of constructing initial pool is given below: 

4.3. Fitness evaluation 

The total fitness of the path or chromosome is equal to the salesman's total distance travelled. The length of 

each edge visited by the tour is added to determine each chromosome's fitness.  

4.4. Selection 

Two types of selection techniques have been followed: binary tournament and Roulette wheel selection 

method for selecting the pool of chromosomes for crossover. 50% of the population are taken using binary 

tournament selection method and remaining 50% is taken using roulette wheel selection method. 
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4.5. Crossover 

A new crossover operator called GPX operator (Tripathy et al., 2017) has been used in this algorithm. Here, we 

assume a Global Parent (GP) chromosome. GP contains all the nodes as genes available for a particular data set of 

the problem. Table 2 shows the GP for the TSP instance eil51 containing 51 nodes. 

 

Table 2. GP of the instance eil51 

0 1 2 … 50 

 

An example of crossover is presented in Figure 2. 

 

 
Figure 2. Example of crossover 

4.6. Mutation 

For mutation, two random facility points are taken and they swap their positions. After swapping if it gives the 

better result, this change is made and continues the process with mutation rate 𝑃𝑚. This is called induced mutation 

and it can reduce the tour length after mutation. 

4.7. LS-Heuristic 

We proposed a local search heuristic with two different types of local search techniques for the memetic 

algorithm. For both techniques, we have considered 𝐿𝑐 percentage of chromosomes of the population size. 
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This heuristic includes the 2-opt method and dropS-and-add technique. We have proposed the DropS-and-add 

method where we drop two consecutive facility points and try to re-insert other facility points to reduce the cost. 

If the cost is reduced then we update the path, otherwise, we discard it. 2-opt (Lin and Kernighan, 1973) procedure 

is considered where two edges are removed and other two edges are inserted in the tour. If the cost of the new 

tour is less than the previous then the process is retained, otherwise, it is rolled back. The local search techniques 

are used in this problem to maintain a balance between diversity and convergence. The detail of the LS-heuristic 

and the proposed dropS-ad-add are presented in Algorithm 2 and Algorithm 3. 

 

Algorithm 2. LS-Heuristic 

1.repeat 

2. start again: 

3. best cost  =calculate cost(existing path) 

4. modified path = dropS-and-add(existing path)  

5. nodes-swap = total number of nodes eligible for swapping. 

6. i = 0, j = 0 

7. while i<=  nodes-swapdo 

8.  while j  <=  nodes-swapdo 

9.  new path =  2-opt(modified path, i, j) 

10.  end while 

11. end while 

12. new cost =  calculate cost(new path)  

13. ifnew cost<best costthen 

14.  best cost  =new cost 

15. endif 

16. goto start again 

17.  until no improvement is made   

 

Algorithm 3. DropS and add 

1. Remove a vertex point x from the given path (existing path) 

2. Covered-point = Covered-point𝑈 a, where a covered points by x. 

3. Remove another vertex point y from the existing path, consecutive to the previous point. 

4. Covered-point = Covered-point𝑈 b, where b covered points by y 

5. repeat 

6. Take point p and add it to the existing path in the place where the first point was dropped, where 

pCovered-point 

7.  while all the nodes have not been covered yet 

8.   Take point q, where qCovered-point 

9.   Add the point q in the existing path next after the point p 

10.  end while 

11. until all the points Covered-point has been taken   
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4.8. Uncertainty handling with IT2FS 

All the previous works on CSP are based on minimizing the tour length. In this paper, we have considered two 

objectives of the problem. First is the distances between the cities (i.e., nodes) as interval type 2 fuzzy numbers 

for the uncertainty issue and the survivability of the victims have been taken to include another corresponding 

objective of the problem.  

For comparison between two IT2F numbers we have used their rank values. Centroid ranking method (Mendel, 

2011) has been used to find the value of rank.  

An IT2FS is defined by the reference points and the corresponding heights of the upper and lower membership 

functions. In our algorithm, we took trapezoidal IT2FS into account. Figure 3 above depicts a trapezoidal IT2FS A. 

The FOU is the area that is shaded. Both a lower membership function (LMF)𝜇𝑖(𝑥𝑖) and an upper membership 

function (UMF) 𝜇𝑖(𝑥𝑖) define its boundaries. They are both type-1 fuzzy sets (T1FSs), the UMF and LMF. 

 

 
Figure 3. Twelve reference points for determining FOU and (𝑎𝑈

𝑖1,𝑎𝑈
𝑖2, 𝑎𝑈

𝑖3, 𝑎𝑈
𝑖4) represent a trapezoidal UMF 

𝑎𝑈
𝑖, with height 𝐻1(𝑎̃𝑖

𝑈) and 𝐻2(𝑎̃𝑖
𝑈)and (𝑎𝐿

𝑖1, 𝑎𝐿
𝑖1, 𝑎𝐿

𝑖1, 𝑎𝐿
𝑖1) determines a trapezoidal LMF 𝑎𝑈

𝑖 with height 

𝐻1(𝑎̃𝑖
𝐿)and 𝐻1(𝑎̃𝑖

𝐿) 

 

Addition: Addition between two fuzzy numbers has been done in the following manner. 

 

𝐴̃1 = ((𝑎𝑈
11, 𝑎𝑈

12, 𝑎𝑈
13, … … . . 𝑎𝑈

1𝑛); (𝐻1(𝑎̃1
𝑈), 𝐻2(𝑎̃1

𝑈), … … 𝐻𝑛−1(𝑎̃1
𝑈)))    

((𝑎𝐿
11, 𝑎𝐿

12, 𝑎𝐿
13, … … . . 𝑎𝐿

1𝑛); (𝐻1(𝑎̃1
𝐿), 𝐻2(𝑎̃1

𝐿), … … 𝐻𝑛−1(𝑎̃1
𝐿)))     (17) 

 

𝐴̃2 = ((𝑎𝑈
21, 𝑎𝑈

22, 𝑎𝑈
23, … … . . 𝑎𝑈

2𝑛); (𝐻1(𝑎̃2
𝑈), 𝐻2(𝑎̃2

𝑈), … … 𝐻𝑛−1(𝑎̃2
𝑈)))  

((𝑎𝐿
21, 𝑎𝐿

22, 𝑎𝐿
23, … … . . 𝑎𝐿

2𝑛); (𝐻1(𝑎̃1
𝐿), 𝐻2(𝑎̃1

𝐿), … … 𝐻𝑛−1(𝑎̃1
𝐿)))     (18) 

 

𝐴̃1𝐴̃2 = ((𝑎𝑈
11 + 𝑎𝑈

21, 𝑎𝑈
12 + 𝑎𝑈

12 … … … 𝑎𝑈
1𝑛

+ 𝑎𝑈
2𝑛); (𝑚𝑖𝑛 (𝐻1(𝑎̃1

𝑈), 𝐻1(𝑎̃2
𝑈)) , … . min (𝐻𝑛−1(𝑎̃1

𝑈), 𝐻𝑛−1(𝑎̃1
𝑈))), 

(𝑎𝐿
11 + 𝑎𝐿

21, 𝑎𝐿
12 + 𝑎𝐿

12 … … … 𝑎𝐿
1𝑛 + 𝑎𝐿

2𝑛); 

(𝑚𝑖𝑛 (𝐻1(𝑎̃1
𝐿), 𝐻1(𝑎̃2

𝐿)) , … . min (𝐻𝑛−1(𝑎̃1
𝐿), 𝐻𝑛−1(𝑎̃2

𝐿)))    (19) 
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Let’s see an example of the addition operation with two trapezoidal fuzzy numbers: 

𝐴̃1  =  (0.49, 0.77, 0.77, 0.87;  1, 1), (0.67, 0.77, 0.77, 0.85;  0.95, 0.95)   

𝐴̃2  =  (0.27, 0.52, 0.52, 0.64;  1, 1), (0.4, 0.52, 0.52, 0.64;  0.95, 0.95) 

𝐴̃1 𝐴̃2  =  ((0.49 +  0.27), (0.77 +  0.52), (0.77 +  0.52), (0.87 +  0.64);  min (1, 1), min (1, 1)), ((0.67 

+  0.4), (0.77 +  0.52), (0.77 +  0.52), (0.85 +  0.64);  min (0.95, 0.95), min (0.95, 0.95)) 

=  (0.76, 1.26, 1.26, 1.51;  1, 1), (1.07, 1.29, 1.29, 1.49;  0.95, 0.95) 
 

𝐴̃1𝐴̃2𝐴̃3𝐴̃4… … … 𝐴̃𝑛 = ((𝐴̃1
𝑈, 𝐴̃1

𝐿)(𝐴̃2
𝑈, 𝐴̃2

𝐿)… … … …(𝐴̃𝑛
𝑈, 𝐴̃𝑛

𝐿 ))  

= ((𝐴̃1
𝑈𝐴̃2

𝑈𝐴̃3
𝑈 … … … . . 𝐴̃𝑛

𝑈), (𝐴̃1
𝐿𝐴̃2

𝐿𝐴̃3
𝐿 … … … . . 𝐴̃𝑛

𝐿 ) 

= (( 𝐴11
𝑈 +  𝐴21

𝑈 +  𝐴31
𝑈 +  … + 𝐴𝑛1

𝑈 , 𝐴12
𝑈 + 𝐴22

𝑈 + 𝐴32
𝑈 + ⋯ + 𝐴𝑛2

𝑈 , … … … … ,

𝐴1𝑛
𝑈 + 𝐴2𝑛

𝑈 + 𝐴3𝑛
𝑈 +  …

+ 𝐴𝑛𝑛
𝑈  ; min (𝐻1(𝑎̃1

𝑈), 𝐻1(𝑎̃2
𝑈), … … 𝐻1(𝑎̃𝑛

𝑈)), min (𝐻2(𝑎̃1
𝑈), 𝐻2(𝑎̃2

𝑈), … … 𝐻2(𝑎̃𝑛
𝑈) )) ( 𝐴11

𝐿 +  𝐴21
𝐿

+  𝐴31
𝐿 +  … + 𝐴𝑛1

𝐿 , 𝐴12
𝐿 + 𝐴22

𝐿 + 𝐴32
𝐿 + ⋯ + 𝐴𝑛2

𝐿 , … … … … ,

𝐴1𝑛
𝐿 + 𝐴2𝑛

𝐿 + 𝐴3𝑛
𝐿 + ⋯

+ 𝐴𝑛𝑛
𝐿  ; min (𝐻1(𝑎̃1

𝐿), 𝐻1(𝑎̃2
𝐿), … … 𝐻1(𝑎̃𝑛

𝐿 )), min (𝐻2(𝑎̃1
𝐿), 𝐻2(𝑎̃2

𝐿), … … 𝐻2(𝑎̃𝑛
𝐿 ) ) )) 

 

Ranking: Ranking of IT2FSs is an important role in the decision-making process with IT2FS. 

How to compare two IT2FSs is important since, unlike real numbers, they do not naturally form a linear order. 

Intervals have been utilized with type-2 fuzzy lengths. Basically, it is a way to convert an IT2FS into a real number. 

The actual figures are compared next. The literature has a variety of ranking techniques (Lee and Chen, 2008; 

Mendel, 2011; Chiao, 2012). The centroid ranking method (Karnik and Mendel, 2001) is employed in this work to 

compare the IT2FSs. According to Karnik and Mendel (2001), 𝑐𝑙  and 𝑐𝑟 are calculated from the higher membership 

functions of A in the manner described below: 

 

𝑐𝑙 =  𝑚𝑖𝑛𝐿𝜖𝑁𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝐴𝑒(𝐿)) ,                                     (20) 

 

𝑐𝑟 =  𝑚𝑖𝑛𝑅𝜖𝑁𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝐴𝑒(𝑅)) ,                                                   (21) 

 

Where 

 

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝐴𝑒(𝐿)) =  
∑ 𝑥𝑖𝜇𝐴̃(𝑥𝑖

𝐿
𝑖=1 ) + ∑ 𝑥𝑖𝜇𝐴̃(𝑥𝑖

𝑁
𝑖=𝐿+1 )

∑ 𝜇𝐴̃(𝑥𝑖)𝐿
𝑖=1  + ∑ 𝜇𝐴̃(𝑥𝑖)𝑁

𝑖=𝐿+1

                                    (22) 

 

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝐴𝑒(𝑅)) =  
∑ 𝑥𝑖𝜇𝐴̃(𝑥𝑖)𝑅

𝑖=1  + ∑ 𝑥𝑖𝜇𝐴̃(𝑥𝑖
𝑁
𝑖=𝑅+1 )

∑ 𝜇𝐴̃(𝑥𝑖)𝑅
𝑖=1  + ∑ 𝜇𝐴̃(𝑥𝑖)𝑁

𝑖=𝑅+1

                            (23) 

 

where 𝐿 ∈ 𝑁 is the switch point that makes the change from 𝜇𝐴̃ to 𝜇𝐴̃ (Figure 4(a)), and 𝑅 ∈ 𝑁 is the switch point 

which marks the changes from 𝜇𝐴 to 𝜇𝐴̃ (Figure 4 (b)),   is the number of discrete points on which the 𝑥 − domain 

of A has been credited. The pseudo-code for computing L and 𝑐𝑙  is given in algorithm below. We considered at the 

discrete version of the algorithm here. 
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Figure 4. (a) Interpolation of switch point L (b) Interpolation of switch point R 

 

The discrete version of KM algorithm and recursive algorithm: 

In order to find L, and consequently 𝑐𝑙, the KM algorithm goes as follows: 

 

1. Start the search by computing an initial point 𝑐́ : 

 

𝑐́ =    
∑ 𝑥𝑖𝜃𝑖

𝑁
𝑖=1

∑ 𝜃𝑖
𝑁
𝑖=1 `

                                                                            (24) 

 

With  𝜃𝑖= (𝜇𝐴(𝑥𝑖) + 𝜇𝐴
(𝑥𝑖))/2 ,    𝑖 = 1, 2, 3, … … … , 𝑁                                                      (25) 

 

2. Find k (1 ≤ 𝑘 ≤ 𝑁 − 1) such that 𝑥𝑘 ≤ 𝑐́ ≤ 𝑥𝑘+1. 

 

3. Set 𝜃𝑖 = {
𝜇𝐴(𝑥𝑖),            𝑖 ≤ 𝑘,

𝜇𝐴
(𝑥𝑖),            𝑖 > 𝑘,

    and compute 𝑐́́ =  
∑ 𝑥𝑖𝜃𝑖

𝑁
𝑖=1

∑ 𝜃𝑖
𝑁
𝑖=1

                     (26) 

 

4. If  𝑐́ =  𝑐́́ then stop and set 𝑐𝑙 = 𝑐́́ , 𝐿 = 𝑘. Else go to step 5. 

 

5. Set𝑐́ =  𝑐́́ and go to step 2. 

 

Then, the average of 𝑐𝑙  and 𝑐𝑟 of IT2FS 𝐴̃, i.e., 𝑐(𝐴̃) is computed using the following formula, which is the 

centroid-based ranking value of IT2FS𝐴̃. 

 

𝑐(𝐴̃) =  
(𝑐𝑙+𝑐𝑟)

2
                                                                 (27) 

 

The larger is the centroid value 𝑐(𝐴̃), the greater is the arc length corresponding IT2FS 𝐴̃, that is less acceptable, 

as we have minimization objective. As an example, let us consider the IT2FS 𝐴̃ =

((5.38, 7.50, 9.00, 9.81; 1, 1), (8.29,8.56,8.56,9.21; 0.38,0.38)). To find the centroid-based rank of 𝐴1,2̃, we 

consider N, specified in approach, as 50. We computed the initial point 𝑐𝑙̀̀ =  7.86 using (4.8.10). This value is 

𝜇𝐴̃ 𝜇𝐴̃ 1 1 

𝑥 𝑥 𝑥1𝑥2   …   𝑥𝐿        …     𝑥𝑅   …   𝑥𝑁 𝑥1𝑥2   …   𝑥𝐿        …     𝑥𝑅   …   𝑥𝑁 

(a) (b) 
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assigned to 𝑐𝑙̀. Then the value of 𝑘 = 21 is computed following the loop defined in step 2. From this, we get 𝑐𝑙̀̀ =

 7.28 using the value 𝑘 as 21. As the values of 𝑐𝑙̀(= 7.86) and 𝑐𝑙̀̀ (=  7.28)  are not equal, we repeat our process 

(step 2 to step 4) of the algorithm until the value of 𝑐𝑙̀  and 𝑐𝑙̀
̀  converges, i.e., they have the same value, which is 

7.24 for this example. So, we get the value of 𝑐𝑙 = 7.24. Similarly, we compute the value of 𝑐𝑟 = 8.56. The average 

of 𝑐𝑙  and 𝑐𝑟 of IT2FS 𝐴12̃, i.e., 𝑐(𝐴12̃) = 7.90 is computed using (4.8.13)  

Let 𝐴̃ and 𝐵̃ are two IT2FSs. Then 

𝑎) 𝐴̃ 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝐵̃  if and only if 𝑐(𝐴̃) < 𝑐(𝐵̃). 

𝑏) 𝐴̃ 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝐵̃  if and only if 𝑐(𝐴̃) > 𝑐(𝐵̃). 

𝑐) 𝐴̃𝑛 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐵̃  if and only if 𝑐(𝐴̃) = 𝑐(𝐵̃). 

Here, 𝐴̃ 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝐵̃ implies that the length of the arc which is represented by 𝐴̃ is less than the length of 

the arc represented by 𝐵̃. Similarly, 𝐴̃ 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐵̃ implies that the length of the arc represented by 𝐴̃is same 

the length of the arc represented by 𝐵̃. 𝐴̃ 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝐵̃ implies that the length of the arc represented by 𝐴̃is greater 

than the length of the arc represented by 𝐵̃. As a result, the ranking values of IT2FSs establish a natural order 

among those IT2F numbers. 

5. Results and Discussion 

We have implemented the proposed memetic algorithm with both types of distance parameters (discrete and 

fuzzy) for the distance between cities. To find the covered customers, we have used the NC nearest customers 

with a fixed value of NC. We have used 15 instances, such as distance and survivability instances, which ranges 

from 50 nodes to 130 nodes. We have used the system of Intel® Core (TH) 2 Duo CPU with E8400@3.00 Ghz having 

4 GB RAM for the execution of the algorithms. We have implemented the algorithms in JAVA in Net Beans IDE 8.0. 

To calculate the tour cost, we have taken three different values of NC measurements, which show the flexibility 

in selecting the coverage area. As per the requirement, NC can be changed when developing the transport model 

after a disaster. The instances for the problem are generated randomly. For the instances for the deterministic 

version of CSP, we have named it as DI and followed by the number of nodes. For uncertain CSP, we have named 

as UI and followed by the number of nodes. Here Di is denoted as a deterministic instance and UI is denoted as an 

uncertain instance. The number of nodes varies from 50 to 130 in the instances for both versions of CSP. 

In Table 3, we have shown the results of the memetic algorithm with discrete values of the distance between 

cities. Here the weights are 0.5 for distance and 0.5 for survivability.  Best-obj. represents the best objective value 

in five times of its execution, 𝐹𝑐 represents the number of facilities visited in the tour, 𝑇𝑣is the survivability to visit 

the tour for the best cost in seconds. 𝐵𝑒𝑠𝑡 − 𝑜𝑏𝑗𝑑𝑖𝑠𝑡for the total tour distance for the Best-obj where 𝑤1 = 1 and 

𝑤2 = 0and 𝐵𝑒𝑠𝑡 − 𝑜𝑏𝑗𝑐𝑜𝑚𝑓𝑜𝑟𝑡 for storing total tour survivability of the Best-obj of the results having 𝑤1 = 0 and 

𝑤2 = 1with corresponding dataset and NC values. 

In Table 4 above, we have shown the results of the memetic algorithm with IT2FS values of the distance between 

cities and considering weights 0.5 and 0.5, respectively. The survivability instances are the same as the previous 

discrete method. Best-obj. represents the best objective value in hundred times of its execution, 𝐹𝑐 represents the 

number of facilities visited in the tour, 𝑇𝑣 is the survivability after visiting the tour for the best cost in seconds with 

corresponding dataset and NC values. 

Visualization of the weighted sum module: In the result section, we have taken the weight factors for distance 

and survivability as 0.5 and 0.5. That means we have weighted both the data equally and formed the instances DI 

and UI. The solution that passes through the black line will be the non-dominated solution. The solutions in the 

graph are shown in pair i.e., [weight of distance] [weight of survivability]. 
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Table 3. Results of the multi-objective CSP with discrete distance data set’s value 

Name 
Memetic Algorithm 

NC Best-obj 𝐹𝑐 𝑇𝑣 𝐵𝑒𝑠𝑡 − 𝑜𝑏𝑗𝑑𝑖𝑠𝑡  𝐵𝑒𝑠𝑡 − 𝑜𝑏𝑗𝑐𝑜𝑚𝑓𝑜𝑟𝑡  

DI50 

7 280 11 5.04 226 334 

8 263 9 2.23 187 339 

9 247 8 1.54 212 282 

DI55 

7 317 12 4.67 272 362 

8 282 10 1.83 272 293 

9 272 9 3.08 318 226 

DI60 

7 361 13 4.19 338 384 

8 334 12 5.11 247 421 

9 310 11 1.83 285 335 

DI70 

7 382 17 5.51 341 423 

8 342 14 3.88 316 367 

9 326 13 3.49 350 301 

DI80 

7 464 19 8.80 424 505 

8 428 19 3.57 349 506 

9 397 14 6.42 398 395 

DI85 

7 440 18 15.79 411 470 

8 429 19 4.02 380 479 

9 403 16 3.73 343 463 

DI90 

7 457 18 10.92 442 473 

8 444 17 9.15 439 449 

9 407 16 6.82 364 450 

DI95 

7 493 20 8.53 403 582 

8 458 19 18.38 461 454 

9 420 18 8.28 393 448 

DI100 

7 535 23 10.19 480 589 

8 493 20 15.42 439 547 

9 466 19 6.28 458 475 

DI105 

7 586 25 20.56 506 667 

8 509 20 13.22 499 519 

9 483 19 16.53 395 572 

DI110 

7 593 25 11.82 544 642 

8 537 24 8.98 440 635 

9 507 19 20.08 404 609 

DI115 

7 576 24 21.67 491 661 

8 563 24 25.57 477 649 

9 510 22 14.74 406 615 

DI120 

7 619 30 20.68 521 717 

8 574 23 16.98 486 661 

9 526 20 24.44 493 559 

DI125 

7 639 26 55.26 625 653 

8 599 25 17.51 535 663 

9 557 23 43.86 523 591 

DI130 

7 671 32 23.62 583 758 

8 612 27 17.14 480 744 

9 591 24 15.63 409 773 



Journal of Decision Analytics and Intelligent Computing 3(1) (2023) 122-138 Tripathy 

 135  
 

Table 4. Results of the multi-objective CSP with IT2FS distance data set’s value 

Name Memetic Algorithm 

NC Best-obj 𝐹𝑐 𝑇𝑣 

UI50 

7 341 8 2.15 

8 323 7 2.23 

9 282 6 1.27 

UI55 

7 405 9 2.03 

8 340 7 1.98 

9 325 7 2.70 

UI60 

7 440 10 2.26 

8 400 9 2.31 

9 386 8 4.06 

UI70 

7 513 12 4.90 

8 451 11 2.73 

9 433 10 1.97 

UI80 

7 574 13 7.09 

8 553 12 9.97 

9 524 12 2.77 

UI85 

7 625 15 9.97 

8 547 13 6.09 

9 521 12 6.71 

UI90 

7 681 17 5.51 

8 596 14 4.28 

9 584 13 10.90 

UI95 

7 700 17 12.16 

8 645 16 5.39 

9 611 14 5.14 

UI100 

7 751 18 12.58 

8 688 16 11.06 

9 602 14 4.64 

UI105 

7 807 19 14.21 

8 767 18 12.35 

9 692 16 7.31 

UI110 

7 827 20 19.93 

8 778 19 7.60 

9 719 17 7.04 

UI115 

7 884 21 16.24 

8 774 18 12.20 

9 741 18 10.22 

UI120 

7 892 21 18.40 

8 827 20 19.78 

9 773 19 9.84 

UI125 

7 930 22 30.79 

8 858 21 11.20 

9 815 19 10.11 

UI130 

7 992 25 30.42 

8 923 23 26.70 

9 836 19 16.34 
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The above figure 5 clearly shows that with each weight distribution, the problem gives the non-dominated 

solution with the best solutions taken from each weight group. The best solutions offer good diversity. Now it’s 

upon the user to select a particular weight per requirement. 

 

Survivability  

                      Distance 

Figure 5. Plotting of the best solutions in each weight combinations. 

6. Conclusions 

The goal of the CSP problem is to cover all the victims in a devastated area after a disaster by traversing a set 

of facility points where any victim or customer can come and get the service. Any customer point can be treated 

as a facility in this problem. Here, a multi-objective version of the deterministic covering salesman problem is 

formulated and solved. We have developed two memetic algorithms introducing a new local search technique to 

solve the problem. In addition to this, we have extended the deterministic CSP towards uncertainty. We have used 

interval type-2 fuzzy numbers as the distance between cities to handle the uncertainty. This type of problem can 

be used specifically in disaster management, rural health care delivery, mass fatality management, etc. The results 

indicate that the memetic algorithm with introduced local search outperforms the other memetic algorithm. The 

work can be extended in the future by taking more than two objectives and having more uncertainty. 
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