Bipolar complex fuzzy subalgebras and ideals of BCK/BCI-algebras

Authors

  • Tahir Mahmood Department of Mathematics and Statistics, International Islamic University Islamabad, Pakistan
  • Ubaid ur Rehman Department of Mathematics and Statistics, International Islamic University Islamabad, Pakistan

DOI:

https://doi.org/10.31181/jdaic10021042023m

Keywords:

Bipolar complex fuzzy set, BCI/BCK algebra, bipolar complex fuzzy subalgebra/ideal

Abstract

The conception of the bipolar complex fuzzy set (BCFS) is one of the fundamental and significant modifications of the fuzzy set (FS) to tackle the tricky and awkward information. BCFS has a rich and wider structure and has been utilized in various fields. In this article, we introduce the concept of bipolar complex fuzzy (BCF) subalgebras (BCFSAs), BCF ideals (BCFIs) of a BCK/BCI-algebra along with certain properties. Further, we investigate the relations between BCFSA and a BCFI and a necessary condition for BCFSA to be a BCFI. We also investigate characterizations of BCFI. Moreover, we introduce the notion of equivalence relations on the collection of all BCFIs of BCK/BCI algebra and the associated properties of equivalence relations.

Downloads

Download data is not yet available.

References

Akram, M., & Zhan, J. (2006). On sensible fuzzy ideals of BCK-algebras with respect to a t-conorm. International journal of mathematics and mathematical sciences, 2006.

Akram, M., Dar, K. H., Jun, Y. B., & Roh, E. H. (2007). Fuzzy structures of K (G)-algebra. Southeast Asian Bulletin of Mathematics, 31(4), 625-637.

Akram, M., Saeid, A. B., Shum, K. P., & Meng, B. L. (2010). Bipolar fuzzy K-algebras. International Journal of Fuzzy Systems, 12(3), 252-258.

Al-Husban, A. (2022). Bipolar Complex Intuitionistic Fuzzy Sets. Earthline Journal of Mathematical Sciences, 8(2), 273-280.

Al-Masarwah, A. M. (2018). On some properties of doubt bipolar fuzzy H-ideals in BCK/BCI-algebras. European journal of pure and applied mathematics, 11(3), 652-670.

Biswas, R. (1990). Fuzzy subgroups and anti fuzzy subgroups. Fuzzy sets and systems, 35(1), 121-124.

Du, J., & Liao, Z. (2007, August). _Generalized Fuzzy Ideals of BCH-Algebra. In Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007), IEEE, 1, 294-299.

Dubois, D., & Prade, H. (1979). Fuzzy real algebra: some results. Fuzzy sets and systems, 2(4), 327-348.

Imai, Y., & Iséki, K. (1965). On axiom systems of propositional calculi. I. Proceedings of the Japan Academy, 41(6), 436-439.

Iséki, K. (1966). An algebra related with a propositional calculus. Proceedings of the Japan Academy, 42(1), 26-29.

Jan, N., Maqsood, R., Nasir, A., Alhilal, M. S., Alabrah, A., & Al-Aidroos, N. (2022). A New Approach to Model Machine Learning by Using Complex Bipolar Intuitionistic Fuzzy Information. Journal of Function Spaces, 2022, 3147321.

Jun, Y. B. (2005). On (α, β)-fuzzy subalgebras of BCK/BCI-algebras. Bulletin of the Korean Mathematical Society, 42(4), 703-711.

Jun, Y. B. (2009). Generalizations of (∈,∈∨ q)-fuzzy subalgebras in BCK/BCI-algebras. Computers & Mathematics with Applications, 58(7), 1383-1390.

Jun, Y. B., & Xin, X. L. (2019). Complex fuzzy sets with application in BCK/BCI-Algebras. Bulletin of the Section of Logic, 48(3), 173-185.

Jun, Y. B., Kang, M. S., & Kim, H. S. (2009). Bipolar fuzzy structures of some types of ideals in hyper BCK-algebras. Scientiae Mathematicae Japonicae, 70(1), 109-121.

Kawila, K., Udomsetchai, C., & Iampan, A. (2018). Bipolar fuzzy UP-algebras. Mathematical and Computational Applications, 23(4), 69.

Lee, K. J., & Jun, Y. B. (2011). Bipolar fuzzy a-ideals of BCI-algebras. Communications of the Korean Mathematical Society, 26(4), 531-542.

Liu, W. J. (1982). Fuzzy invariant subgroups and fuzzy ideals. Fuzzy sets and Systems, 8(2), 133-139.

Mahmood, T., & Munir, M. (2013). On bipolar fuzzy subgroups. World Applied Sciences Journal, 27(12), 1806-1811.

Mahmood, T., & Ur Rehman, U. (2022a). A novel approach towards bipolar complex fuzzy sets and their applications in generalized similarity measures. International Journal of Intelligent Systems, 37(1), 535-567.

Mahmood, T., & Ur Rehman, U. (2022b). A method to multi-attribute decision making technique based on Dombi aggregation operators under bipolar complex fuzzy information. Computational and Applied Mathematics, 41(1), 1-23.

Mahmood, T., Rehman, U. U., Ahmmad, J., & Santos-García, G. (2021). Bipolar complex fuzzy Hamacher aggregation operators and their applications in multi-attribute decision making. Mathematics, 10(1), 23.

Mahmood, T., Rehman, U. U., Jaleel, A., Ahmmad, J., & Chinram, R. (2022). Bipolar complex fuzzy soft sets and their applications in decision-making. Mathematics, 10(7), 1048.

Meng, B. L. (2000). Some results of fuzzy BCK-filters. Information Sciences, 130(1-4), 185-194.

Mordeson, J. N., & Malik, D. S. (1998). Fuzzy commutative algebra. Singapore, New Jersey, London, Hong Kong: World scientific.

Muhiuddin, G. (2014). Bipolar fuzzy KU-subalgebras/ideals of KU-algebras. Annals of Fuzzy Mathematics and Informatics, 8(3), 409-418.

Muhiuddin, G., & Al-Kadi, D. (2021). Bipolar fuzzy implicative ideals of BCK-algebras. Journal of Mathematics, 2021, 6623907.

Muhiuddin, G., Al-Kadi, D., Mahboob, A., & Shum, K. P. (2020). New types of bipolar fuzzy ideals of BCK-algebras. International Journal of Analysis and Applications, 18(5), 859-875.

Ramot, D., Milo, R., Friedman, M., & Kandel, A. (2002). Complex fuzzy sets. IEEE Transactions on Fuzzy Systems, 10(2), 171-186.

Rasuli, R. (2022). Anti complex fuzzy Lie subalgebras under S-norms. Mathematical Analysis and its Contemporary Applications, 4(4), 13-26.

Rehman, U. U., Mahmood, T., Albaity, M., Hayat, K., & Ali, Z. (2022). Identification and Prioritization of DevOps Success Factors Using Bipolar Complex Fuzzy Setting With Frank Aggregation Operators and Analytical Hierarchy Process. IEEE Access, 10, 74702-74721.

Rezaei, A., & Saeid, A. B. (2011). On fuzzy subalgebras of BE-algebras. Afrika Matematika, 22(2), 115-127.

Shaqaqha, S. (2019). Complex fuzzy lie algebras. arXiv preprint arXiv:1905.01687.

Tamir, D. E., Jin, L., & Kandel, A. (2011). A new interpretation of complex membership grade. International Journal of Intelligent Systems, 26(4), 285-312.

Yang, X., Mahmood, T., & ur Rehman, U. (2022). Bipolar Complex Fuzzy Subgroups. Mathematics, 10(16), 2882.

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.

Zhang, W. R. (1994). Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis. In NAFIPS/IFIS/NASA'94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige, IEEE, 305-309.

Published

21.04.2023

How to Cite

Mahmood, T., & ur Rehman, U. (2023). Bipolar complex fuzzy subalgebras and ideals of BCK/BCI-algebras. Journal of Decision Analytics and Intelligent Computing, 3(1), 47–61. https://doi.org/10.31181/jdaic10021042023m