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Abstract 

Edge is the high frequency part of an image and represents location where abrupt change takes place in the 

intensity of luminescence. Edge detection is the basic step of the feature extraction and pattern recognition of 

any image. Wavelet transforms extracts low and high frequency information of any signal separately. In two-

dimensional wavelet transforms, an image is decomposed into four sub-images the one approximation image and 

three differences’ images (horizontal, vertical and diagonal images) in each decomposition level. The differences’ 

images show how the neighbouring pixels differ in the horizontal, vertical and diagonal directions. The 

approximation coefficients are forced to zero and differences’ coefficients are inverse wavelet transformed. As 

reconstructed image shows the edges of the image and describes its pattern.  Using Haar wavelet at 

decomposition level 1, 2 and 3, the image pattern recognition by edge detection is performed and discussed.  

Keywords: Edge, image, approximation, difference, Haar, wavelet   

1. Introduction 

Edge is the line that develops understanding about the image; therefore, the image without edge does not 

make sense to the eyes. An edge is defined as a location in an image where the luminescence level or gray level 

changes abruptly (Canny, 2010)). Edges are actually high frequencies in an image. It marks the boundary of 

discontinuity or strong contrast in luminescence in an image. Edge detection is a fundamental step in image 

analysis and machine vision systems; it analyses an image by identifying edges in an image or visual data. Edge 

detection is a pattern recognition problem to an extent and is very challenging. Edge detection is a very important 

technique in computer and machine vision and has wide applications in biometric recognition, automatic 

character recognition, document processing, remote sensing, medical imaging, surveillance, automotive sensing, 

human-computer interaction, visual inspection, etc. Edge detection precedes image segmentation and feature 

extraction stages in image analysis and also acts as a dimensionality reduction technique in feature extraction. In 

this sense, only relevant features in an image sufficient to identify the image are extracted while redundant 

features are discarded. Several classical edge detectors have been used for detecting edges in images (Aydin et 

al., 1996). These operators work based on thresholding the pixels within a specified window. An operator may 

take the average value of pixels within a window as the threshold and may be likened to an averaging filter. The 

threshold then depends on the presence, absence and the value of the pixels within that window. These classical 
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edge detectors have limitations in detecting edges in noisy and faint images. Meaningful and spurious edges are 

likely to be detected in a noisy image while edges could be omitted in a faint image, hence, classical operators 

cannot adequately analyse noisy images. Most signals encountered in life, in real-time (audio, video, image, 

motion, pressure) have some degree of noise; hence, a reliable edge detection technique should be sensitive to 

edges and insensitive to noise (Wei et al., 2009).  

Fourier transform is well known technique of spectral analysis in which trigonometrical functions of 

various periods are used to represent functions at various scales. The techniques of Fourier analysis are powerful 

and find wide ranging applications not only in mathematical sciences but also in physics and engineering. From a 

statistical point of view, obtaining the Fourier spectrum of a function is the same as obtaining the least square fit 

of sines and cosines of various frequencies in one or more dimensions. Multiple regression using trigonometrical 

functions is very elegant and simple. The trigonometrical sines and cosines are mutually orthonormal, and the 

Fourier coefficients are written as simple sum of products (in the discrete case) or as integral of products of 

functions (in the continuous case). This process is called Fourier transformation (Hernandez & Weiss, 1996).  

Fourier transform plays an important role in the theory of many branches of science. A waveform optical, 

electrical, or acoustical and its spectrum are appreciated equally as physical pictorial and measurable entities: an 

oscilloscope enables us to see optical or electrical spectra. Our acoustical appreciation is even more direct, since 

ear hears spectra. Waveform and spectra are Fourier transform of each other; the Fourier transform is thus an 

eminent physical relationship. The principle of phase contrast microscope is reminiscent of the circuit for 

detecting frequency modulation, and the explanation of both is conveniently, given in terms of transforms along 

the same line. It is well known that the response of a system is itself harmonic at the same frequency to harmonic 

input, under two conditions: linearity and time invariance of the system.  

Wavelets were introduced in the beginning of the 1980s. The formalization and emergence of wavelet 

theory is the result of multidisciplinary efforts of Mathematicians, Physicists and Engineers. The transient’s world 

is considerable larger and more complex than the garden of stationary signals. In wavelet theory, the 

functions/signals are expressed as the superposition of simple and fixed building blocks at different positions and 

scales. Wavelets have been found quite useful in image edge detection. In discrete wavelet transform (DWT) the 

varying of the time resolution and frequency resolution (scaling) properties are achieved with the use of filters 

(high-pass and low-pass) and sub-sampling respectively. Scaling is achieved by successively passing the input 

signal through half-band cut-off low-pass and high-pass filters and sub-sampling the outputs of both filters (Soman 

& Ramchandran, 2005). In 2D-DWT, the transform is first applied to the columns of the image which consistently 

halves the sizes of all columns in the image and then applied to the rows in like manner. The resultant image 

would be reduced or sub-sampled by 4. Haar wavelets decompose an image of size 𝑁 × 𝑀 into four sub-images 

of sizes 𝑁/2×𝑀/2, where 𝑁 and 𝑀  are even. The decomposed images are the approximation image𝐴 (𝐿𝐿), 

horizontal 𝐻 (𝐻𝐿) , vertical 𝑉 (𝐿𝐻) , and diagonal 𝐷 (𝐻𝐻)  differences’ images (Alarcon-Aquino et al., 2013; 

Decoster et al., 2000). The differences’ images show how the neighbouring pixels differ in the vertical, horizontal 

and diagonal directions. A two level Haar decomposition of an image gives rise to approximations(𝐴1 and 𝐴2)as 

well as details (𝐻1, 𝐻2, 𝑉1, 𝑉2, 𝐷2, and 𝐷2) images. Edges can be found in regions of high contrast; therefore, 

more attention was given to the coefficients derived from high-pass filtering of the image.  

2. Literature review 

Fourier transform gives the spectrum of any time invariant signal having finite energy. However, the Fourier 

transform of a time varying signal does not register frequencies with time. For getting time localization of spectral 

characteristics of a time varying signal, a window function is introduced into Fourier analysis. Window Fourier 

atoms were introduced in 1946 by Gabor to measure localized frequency components of sound. A signal is 
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multiplied by a window function and thereafter its Fourier transforms is taken, so that the spectral information of 

the signal to the domain of influence of the window function are obtained. The window function is translated over 

the time axis to cover the entire time domain, and the spectral information of signal localized neighbourhood in 

time is obtained (Antoine, 2004). This transform is called the window Fourier transform (WFT) or short time 

Fourier transform (STFT). From Heisenberg uncertainty principle, the resolution in time and frequency cannot be 

taken accurately and simultaneously, so that the signal is treated as small bursts associated with long quasi 

stationary components, and each component is analysed with good time resolution or frequency resolution, but 

not both. It is necessary to be able to localize high frequency transient spectral information to a relatively narrow 

time interval while allowing a relatively a wider time interval to identify low frequency characteristics in order to 

capture complete information. In other words, it is desirable to be able to zoom in on the signal for identifying 

short duration transients corresponding to high frequency bursts (Heil & Walnut, 1989).   

Wavelet is the function exhibiting oscillatory behaviour for a short time interval and then dies out. For any 

two real numbers a and b, a wavelet function is defined as (Wickerhauser, 1994; Prasad & Iyenger, 1997): - 

                                                                          𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓 (

𝑡−𝑏

𝑎
) = 𝑇𝑏𝐷𝑎𝜓                                                                     (1) 

 

Putting 𝑎 = 2−𝑗 and 
𝑏

𝑎
= 𝑘, we get discrete wavelets as follows: - 

                                                                           𝜓𝑗,𝑘(𝑡) = 2𝑗 2⁄ 𝜓(2𝑗𝑡 − 𝑘)                                                                            (2) 

where 𝑎 and 𝑏 are the dilation and translation parameter respectively. Here 𝜓(t) is real-valued and this collection 

of wavelets is used as an orthonormal basis.  

The continuous wavelet transform is the modified WFT and defined as follows: -  

                                                                                 𝑊𝑎,𝑏 = ∫ 𝑓(𝑡)
1

√𝑎
𝜓 (

𝑡−𝑏

𝑎
) 𝑑𝑡                                                                   (3) 

The discrete wavelet transform is defined as follows: - 

                                                                                   𝑊𝑗,𝑘 = ∫ 𝑓(𝑡)2𝑗 2⁄ 𝜓(2𝑗𝑡 − 𝑘) 𝑑𝑡                                                        (4) 

 

2.1 Multiresolution analysis (MRA) 

  An MRA is a new recursive method to perform the discrete wavelet transforms (Mallat, 1989; 

Daubechies, 1990; Rioul & Vetterli, 1991; Coifman & Wickerhauser, 1992). It consists of a sequence 𝑉𝑗 : 𝑗 ∈  ℤ of 

closed subspaces of Lebesgue space 𝐿2 (ℝ), a space of square integrable functions, satisfying the properties as 

follows: - 

1)  𝑉𝑗+1  ⊂ 𝑉𝑗      :  𝑗 ∈ ℤ 

2)  ∩𝑗∈ℤ Vj = {0},  ∪𝑗∈ℤ =  𝐿2(ℝ) 

3)  For every, 𝐿2(ℝ), 𝑓 (𝑡) ∈ 𝑉𝑗 ⇒ 𝑓(2𝑡) ∈ 𝑉𝑗+1,  ∀  𝑗 ∈ ℤ 

4) There exists a function 𝜙(𝑡)  ∈  𝑉0 , such that {𝜙(𝑡 − 𝑘): 𝑘 ∈ ℤ} is orthonormal basis of Vo. 

The function 𝜙(𝑡) is called scaling function of given MRA and property 3) implies a dilation equation as follows: - 
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                                                                              𝜙(𝑡) = ∑ ℎ𝑘  √2𝑘∈𝑍 𝜙(2𝑡 − 𝑘)                                                               (5) 

Where ℎ𝑘   is low pass filter and is defined as: -       

 

                                                                                                                          ℎ𝑘=(
1

√2
) ∫ 𝜙 (t)𝜙 (2𝑡 − 𝑘)

∞

−∞
𝑑𝑡                                                             (6) 

Now we consider 𝑊1  be orthogonal compliment of 𝑉1   in 𝑉0  i.e. 

                                                                                  𝑉0= 𝑉1   ⊕ 𝑊1   

If  𝜓 ∈ 𝑊1 be any wavelet function then, 

                                                                            𝜓(𝑡) = ∑ 𝑔𝑘𝑘∈𝑍 √2 𝜙(2𝑡 − 𝑘)                                                                 (7)   

where 𝑔𝑘   =(−1)𝑘+1 ℎ1−𝑘   are high pass filters. In general, we can write, 

                                                                                   𝑉𝑗    = 𝑉𝑗+1   ⊕ 𝑊𝑗+1                                                                                    (8) 

But,                                                                        𝑉𝑗+1  = 𝑉𝑗+2   ⊕ 𝑊𝑗+2   

Therefore, 

                                                                                                                                   𝑉𝑗   = 𝑊𝑗+1  ⊕ 𝑊𝑗+2 ⊕ 𝑉𝑗+2   

                                                                                                                                                      . .        . . . .                . . 

                                                                                                              𝑉𝑗    = 𝑊𝑗+1  ⊕ 𝑊𝑗+2  ⊕ 𝑊𝑗+3  ⊕............ 𝑊𝑗+𝑝 ⊕ 𝑉𝑗+𝑝                                     (9) 

where 𝑝 is any desired number representing the order of level of decomposition. 

2.2 One dimensional (1D) wavelet transform 

A function 𝑓 (that is for which ∫ |𝑓(𝑥)| 𝑑𝑥 < ∞
ℝ

) has a wavelet series expansion in vector space 𝑉𝑗, is defined 

as, 

                                                 𝑓(𝑥) = ∑ 𝑎𝑗+𝑝,𝑘  𝑘∈ℤ 𝜙(𝑥 − 𝑘) + ∑ ∑ 𝑑𝑗+𝑝,𝑘  𝑘∈ℤ 𝜓𝑗+𝑝,𝑘
∞
𝑝=1 (𝑥)                                    (10) 

It also follows that the sum ∑ 𝑎𝑗+𝑝,𝑘𝜙(𝑥 − 𝑘)𝑘∈ℤ  is the orthogonal projection of 𝑓 on the space 𝑉𝑗+𝑝  of square 

integrable functions that are constant on integer end point intervals [ 𝑘, 𝑘  + 1). For 𝑗  = 0, the sum,  

∑ ∑ 𝑑𝑗+𝑝,𝑘  𝑘∈ℤ 𝜓𝑗+𝑝,𝑘
∞
𝑝=1 (𝑥)  adds the details required to obtain an approximation in the space 𝑉𝑝  of square 

integrable functions that are constant on all intervals.  

If all such functions 𝑢 and 𝑣 are orthogonal (⟨𝑢, 𝑣⟩  =  0), then 𝑊𝑗  is the orthogonal complement of  𝑉𝑗 in 

𝑉𝑗−1 (𝑉𝑗 ⊥ 𝑊𝑗) and the construction below will give the scaling function and mother wavelet of an orthonormal 

wavelet basis for 𝐿2((ℝ). By MRA, the orthogonal decomposition of 𝑝th level of space 𝑉𝑗 is as following: -    

                                                                                  𝑉𝑗 = 𝑉𝑗+𝑝⨁ ∑ 𝑊𝑗+𝑝
∞
𝑝=1  

A discrete signal is approximated in space of square summable sequences ℓ2(ℤ) as follows [Kumar et al., 2015; 

Kumar et al., 2021): - 
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                                            𝑓[𝑛] =
1

√𝑀
∑ 𝑎[𝑗 + 𝑝, 𝑘]𝜙𝑗+𝑝,𝑘𝑘 [𝑛] +

1

√𝑀
∑ ∑ 𝑑[𝑗 + 𝑝, 𝑘]𝜓𝑗+𝑝,𝑘𝑘 [𝑛]∞

𝑝=1                         (11) 

Here 𝑓[𝑛],  𝜙𝑗+𝑝,𝑘[𝑛] and 𝜓𝑗+𝑝,𝑘[𝑛] are discrete functions defined in [0, 𝑀 − 1], totally 𝑀 points. Because the 

sets {𝜙𝑗+𝑝,𝑘[𝑛]}
𝑘𝜖ℤ

 and {𝜓𝑗+𝑝,𝑘[𝑛]}
 𝑘𝜖ℤ,𝑝𝜖ℤ+  are orthogonal to each other. The We wavelet coefficients can be 

obtained by taking the inner product as follows: -  

                                                                          𝑎[𝑗 + 𝑝, 𝑘] =
1

√𝑀
∑ 𝑓[𝑛] 𝜙𝑗+𝑝,𝑘𝑛 [𝑛]                                                           (11)                                                                                 

                                                                          𝑑[𝑗 + 𝑝, 𝑘] =
1

√𝑀
∑ 𝑓[𝑛] 𝜓𝑗+𝑝,𝑘𝑛 [𝑛]                                                         (12)           

where  𝑎[𝑗 + 𝑝, 𝑘] and 𝑑[𝑗 + 𝑝, 𝑘] are called approximation and detailed coefficients respectively. From property 

of scaling function, 

                                                                          𝜙𝑗,𝑘[𝑛] = 2𝑗 2⁄ 𝜙[2𝑗𝑛 − 𝑘] 

                                                                                        = 2𝑗 2⁄ ∑ ℎ𝑛′ [𝑛′]√2𝜙[2(2𝑗𝑛 − 𝑘) − 𝑛′] 

                                                                                         = 2(𝑗+1) 2⁄ ∑ ℎ𝑛′ [𝑛′] 𝜙[2(𝑗+1)𝑛 − 2𝑘 − 𝑛′] 

Let 𝑛′ = 𝑚 − 2𝑘 , we have 𝜙𝑗,𝑘[𝑛] = 2(𝑗+1) 2⁄ ∑ ℎ[𝑚 − 2𝑘]𝜙[2(𝑗+1)𝑛 − 𝑚]𝑚 . Now the approximation 

coefficient,  

                                                                            𝑎[𝑗, 𝑘] =
1

√𝑀
∑ 𝑓[𝑛] 𝜙𝑗,𝑘𝑛 [𝑛] 

                                                                                         =
1

√𝑀
∑ 𝑓[𝑛] 2𝑗 2⁄ 𝜙[2𝑗𝑛 − 𝑘]𝑛  

                                                                                         =
1

√𝑀
∑ 𝑓[𝑛] 2𝑗 2⁄

𝑛 ∑ ℎ[𝑚 − 2𝑘] 𝑚 √2𝜙[2𝑗+1𝑛 − 𝑚] 

                                                                                  = ∑  𝑚 ℎ[𝑚 − 2𝑘] (
1

√𝑀
∑ 𝑓[𝑛] 2𝑗+1 2⁄

𝑛 𝜙[2𝑗+1𝑛 − 𝑚]) 

                                                                                         = ∑  𝑚 ℎ[𝑚 − 2𝑘] 𝑎[𝑗 + 1, 𝑛]                                                                                                       

                                                                                        = ∑  𝑛′ ℎ[𝑛′] ∗ 𝑎[𝑗 + 1, 𝑛], where  𝑘 ≥ 0. 

Similarly, for the detail coefficients, it is, 

                                                                             𝑎[𝑗, 𝑘] = 𝑔[𝑛′] ∗ 𝑑[𝑗 + 1, 𝑛], where  𝑘 ≥ 0.  

By taking 𝑗 = 0, we get, 

                                                                            𝑎[0, 𝑘] = ∑  𝑛′ ℎ[𝑛′] ∗ 𝑎[1, 𝑛] 

                                                                            𝑎[0, 𝑘] = 𝑔[𝑛′] ∗ 𝑑[1, 𝑛] where  𝑘 ≥ 0.  

2.3 Two-dimensional (2D) wavelet transforms 

Digitization is a process in which an analogue image 𝑎(𝑥, 𝑦) in a 2D continuous space is converted into a digital 

image 𝑎[𝑚, 𝑛] described in a 2D discrete space through a sampling process (Gangetto et al., 2006). In an image, 

the intersection of a row and a column is called a pixel. The value assigned to the integer coordinates [𝑚, 𝑛] with 

{m = 0, 1, 2, . . ., M −1} and {n = 0, 1, 2, . . ., N − 1} is 𝑎[𝑚, 𝑛], where  M  and N are rows and columns of 2D 
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continuous image 𝑎(𝑥, 𝑦) respectively. In 2D wavelet transform, the scaling and wavelet function are two variable 

functions denoted as 𝜙(𝑥, 𝑦) and 𝜓(𝑥, 𝑦). The dilated and translated basis functions are defined as follows: - 

                                                                   𝜙𝑗,𝑚,𝑛(𝑥, 𝑦) = 2𝑗 2⁄ 𝜙(2𝑗𝑥 − 𝑚, 2𝑗𝑦 − 𝑛) 

                                                                    𝜓𝑗,𝑚,𝑛
𝑖 (𝑥, 𝑦) = 2𝑗 2⁄ 𝜓𝑖𝜙(2𝑗𝑥 − 𝑚, 2𝑗𝑦 − 𝑛),  𝑖 = {1,2,3}                        (13) 

The 𝜓𝑖(𝑥, 𝑦) represent three different wavelet functions, 𝜓1(𝑥, 𝑦), 𝜓2(𝑥, 𝑦) and 𝜓3(𝑥, 𝑦) (Santhosh et al. 2012). 

However, the wavelet function is related to the order to apply the filters. The functions can be easily rewritten as, 

𝜙(𝑥, 𝑦) = 𝜙(𝑥)𝜙(𝑦) 

𝜓1(𝑥, 𝑦) = 𝜓(𝑥)𝜙(𝑦) 

                                                                                  𝜓2(𝑥, 𝑦) = 𝜙(𝑥)𝜓(𝑦) 

                                                                                  𝜓3(𝑥, 𝑦) = 𝜓(𝑥)𝜓(𝑦) 

The analysis and synthesis equations in 2D wavelet transforms are modified to, 

                                                             𝑎[𝑗 + 𝑝, 𝑚, 𝑛] =
1

√𝑀𝑁
∑ ∑ 𝑓(𝑥, 𝑦) 𝜙𝑗+𝑝,𝑚,𝑛(𝑥, 𝑦)𝑁−1

𝑦=0
𝑀−1
𝑥=0  

                                                            𝑑𝑖[𝑗 + 𝑝, 𝑚, 𝑛] =
1

√𝑀𝑁
∑ ∑ 𝑓(𝑥, 𝑦) 𝜓𝑗+𝑝,𝑚,𝑛

𝑖  (𝑥, 𝑦)𝑁−1
𝑦=0

𝑀−1
𝑥=0  

where 𝑖 = {1,2,3}. Therefore, a two-dimensional signal can be defined in terms of wavelet coefficients as follows: 

- 

                                                𝑓(𝑥, 𝑦) =
1

√𝑀𝑁
∑ ∑ 𝑎[𝑗 + 𝑝, 𝑚, 𝑛] 𝜙𝑗+𝑝,𝑚,𝑛(𝑥, 𝑦)𝑛𝑚      

                                                                                 +
1

√𝑀𝑁
∑ ∑ ∑ ∑ 𝑑𝑖

𝑛𝑚 [𝑗 + 𝑝, 𝑚, 𝑛] 𝜓𝑗+𝑝,𝑚,𝑛
𝑖  (𝑥, 𝑦)∞

𝑝=1𝑖=1,2,3           (14)   

 

3. Research methodology 

A two-dimensional wavelet transform is the superposition of two separate one-dimensional wavelet 

transforms. First of all, the adaptive and best wavelet is selected for the given image, that is Haar wavelet (Kharate 

et al., 2007; Kumar, 2017). Thereafter the image is filtered along 𝑥-dimension through low pass analysis filters and 

thereafter through high pass analysis filters and decimated by two. Low pass filtered wavelet coefficients are 

stored on the left part of the matrix and high pass wavelet filtered coefficients on the right. The decimation 

process is applied to maintain size of the transformed image same as the size of original image.   
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Figure 1. Horizontal transform; 2 sub-band 

Then, filtering the sub-image is performed along the 𝑦-dimension and decimated by two. Finally, after first level 

decomposition, the image is divided into four sub-bands denoted by 𝐿𝐿1, 𝐻𝐿1, 𝐿𝐻1, and 𝐻𝐻1.   

 

Figure 2. Vertical transform; 4 sub-bands 

The process of filtering the image is called pyramidal decomposition of the image. With help of 2D-wavelet 

transform of an image, the scaling and wavelet functions can be described as, 

                                                                    𝜙𝑗,𝑚,𝑛(𝑥, 𝑦) = 2𝑗 2⁄ 𝜙(2𝑗𝑥 − 𝑚, 2𝑗𝑦 − 𝑛) 

                                                                      𝜓𝑖
𝑗,𝑚,𝑛

(𝑥) = 2𝑗 2⁄ 𝜓𝑖(2𝑗𝑥 − 𝑚, 2𝑗𝑦 − 𝑛),  

for 1 ≤ 𝑖 ≤ 3. The wavelet functions {𝜓𝑗,𝑚,𝑛
1 , 𝜓𝑗,𝑚,𝑛

2 , 𝜓𝑗,𝑚,𝑛
3 } form an orthonormal basis of the subspace of details, 

                                                                               𝑊𝑗
2 = (𝑉𝑗 ⊗ 𝑊𝑗) (𝑊𝑗 ⊗ 𝑉𝑗  ) ⊕ (𝑊𝑗 ⊗ 𝑊𝑗)  

at scale 𝑗. The Lebesgue space 𝐿2(ℝ2) can be expressed as: - 

                                                                                𝐿2(ℝ2) = ∑  𝑊𝑗
2

⨁𝑗
                                                                                (15) 

 Discrete wavelet transforms with a cascade of filtering with ℎ̅ and 𝑔̅ is followed by sub-sampling by a factor of 2. 

The 𝐿𝐿1,  𝐻𝐿1, 𝐿𝐻1 and 𝐻𝐻1 are each 𝑀 2 × 𝑁 2⁄⁄  submatrices. The trend 𝐿𝐿1 consists of scaling coefficients, 

whereas the fluctuations 𝐻𝐿1, 𝐿𝐻1 and 𝐻𝐻1 consist of wavelet coefficients for each of the three kinds of wavelet 

basis functions. The trend 𝐿𝐿1 contains scaling coefficients for the scaling 

basis {𝜙𝑗,𝑀−1(𝑥)𝜙𝑘,𝑀−1(𝑦)} and  occupies the upper left quadrant of the transform. In each step of 

decomposition, the scaling coefficients of the image is decomposed to the next level of decomposition. This 

process is continuously going on until the required level of decomposition is achieved using MATLAB toolbox 

(Pratap, 2006).  
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The left most three plots 𝐿𝐿1, 𝐿𝐿2, 𝐿𝐿3 represent approximation of the image at level 1, 2 and 3 respectively. 

Similarly, from top to bottom next to it are horizontal details (representing horizontal edges) 𝐻𝐿1, 𝐻𝐿2, 𝐻𝐿3 

represent horizontal details, 𝐿𝐻𝐼, 𝐿𝐻2, 𝐿𝐻3 represent vertical details, and 𝐻𝐻1, 𝐻𝐻2, 𝐻𝐻3 represent diagonal 

details respectively. The approximation represents lower frequencies and details (or edges) higher frequencies. 

The approximation coefficients are forced to zero in the required level of decomposition. For edge detection, the 

image is reconstructed with help of detail coefficients.  We have chosen Haar wavelet as an adaptive and best 

wavelet for the wavelet transforms of the image at decomposition level 1, 2 and 3.  

 

4. Results and discussion 

Original image of a child is taken as a raw image (figure 3(a)). 

 

                                          (a). Original Image                          (b). Decomposition at Level 1 

 

 

                               (c). Decomposition at level 2              (d). Decomposition al Level 3 

Figure 3. Original image and its wavelet decomposition 
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 The wavelet approximation and detailed coefficients are determined with help of 2D wavelet transform using 

Haar wavelet, level-1, 2 and 3. The wavelet transformed images at level 1 are shown in figure 3(b). Image of Left 

upper corner represents approximated version of the image corresponding to the lower frequencies, while other 

three images represent its detailed version corresponding to the higher frequencies. Image of right upper corner 

shows horizontal edges, left lower image to the vertical edges and right lower images to the diagonal edges. 

Similarly, the wavelet transformed images at level 2 (Figure 3(c) and at level 3(Figure 3(d) represent second and 

third order edges corresponding to lower and higher frequencies. The trend 𝐿𝐿 consists of scaling coefficients is 

clearly a low pass version and 𝐻𝐿, 𝐿𝐻 & 𝐻𝐻 consist of wavelet coefficients are clearly high pass version of the 

original image. 

 

        Figure 4. Image Pattern with Edge Detection 

It is clear from the wavelet analysis that lower frequency version of the image represents trend of the images, 

while high frequency version represents edges of the image horizontally, vertically and diagonally. Now the 

wavelet coefficients corresponding to lower frequencies at decomposition level 3 are forced to zero and inverse 

wavelet transform of wavelet coefficients corresponding to higher frequencies are performed. We find pattern of 

the image with edge detection (Figure 4).  

5. Conclusion 

The wavelet transforms using multiresolution analysis decomposes a signal into average and detail coefficients 

corresponding to lower and high frequencies respectively. The 2-D wavelet transforms perform average and 

difference between pixel values to form the approximation and detail coefficients of an image. At the edges of an 

image the luminescence changes abruptly and correspond to the high frequencies’ locations. Haar wavelet is 

optimum and best wavelet for the considered image. The image pattern recognition with edge detection is 

performed at decomposition level 3 through excluding the approximation version of the image. SEM, TEM and 

other images can be well analysed by this discrete wavelet transform technique. Therefore, this method of edge 

detection is very useful in surface morphological study of samples in material science and especially in 

nanotechnology.  
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