Autonomous navigation and obstacle avoidance in smart robotic wheelchairs
DOI:
https://doi.org/10.31181/jdaic10019022024sKeywords:
Autonomous Navigation, Obstacle Avoidance, Smart Robotic Wheelchairs, Path Following, Assistive TechnologyAbstract
This review research paper provides a comprehensive analysis of the advancements, challenges, and methodologies in autonomous navigation and obstacle avoidance for smart robotic wheelchairs. The integration of robotics and assistive technology has revolutionized mobility solutions for individuals with impairments, enabling them to navigate complex environments independently. The paper examines the various sensor modalities, machine learning algorithms, and computer vision techniques employed for environment perception and obstacle recognition. It discusses path planning algorithms, motion control strategies, and decision-making processes for autonomous navigation. The review also addresses limitations, such as localization accuracy and dynamic environment modelling, while highlighting recent research advancements and suggesting future directions. Overall, this paper serves as a valuable resource for researchers and practitioners in the field of smart robotic wheelchairs, aiming to enhance mobility and quality of life for individuals with mobility impairments.
Downloads
References
Bakouri, M., Alsehaimi, M., Ismail, H. F., Alshareef, K., Ganoun, A., Alqahtani, A., & Alharbi, Y. (2022). Steering a robotic wheelchair based on voice recognition system using convolutional neural networks. Electronics, 11(1), 168.
Busaeed, S., Mehmood, R., Katib, I., & Corchado, J. M. (2022). LidSonic for Visually Impaired: Green Machine Learning-Based Assistive Smart Glasses with Smart App and Arduino. Electronics, 11(7), 1076.
Chaudhary, A. K., Gupta, V., Gaurav, K., Reddy, T. K., & Behera, L. (2023). EEG Control of a Robotic Wheelchair. In Vinjamuri, R. (Ed.), Human-Robot Interaction - Perspectives and Applications. IntechOpen. https://doi.org/10.5772/intechopen.110679.
D’Angelo, G., & Palmieri, F. (2023). Enhancing COVID-19 tracking apps with human activity recognition using a deep convolutional neural network and HAR-images. Neural Computing and Applications, 35, 13861-13877.
Dahmani, M., Chowdhury, M. E., Khandakar, A., Rahman, T., Al-Jayyousi, K., Hefny, A., & Kiranyaz, S. (2020). An intelligent and low-cost eye-tracking system for motorized wheelchair control. Sensors, 20(14), 3936.
Dairi, A., Harrou, F., Sun, Y., & Senouci, M. (2018). Obstacle detection for intelligent transportation systems using deep stacked autoencoder and $ k $-nearest neighbor scheme. IEEE Sensors Journal, 18(12), 5122-5132.
Farheen, N., Jaman, G. G., & Schoen, M. P. (2022). Object Detection and Navigation Strategy for Obstacle Avoidance Applied to Autonomous Wheel Chair Driving. In 2022 Intermountain Engineering, Technology and Computing (IETC) (pp. 1-5). Orem: IEEE.
Fu, L., Gao, F., Wu, J., Li, R., Karkee, M., & Zhang, Q. (2020). Application of consumer RGB-D cameras for fruit detection and localization in field: A critical review. Computers and Electronics in Agriculture, 177, 105687.
Ghezala, A. A., Sentouh, C., & Pudlo, P. (2022). Direct Model-Reference Adaptive Control for Wheelchair Simulator Control via a Haptic Interface. IFAC-PapersOnLine, 55(29), 49-54.
Gil, Ó., Garrell, A., & Sanfeliu, A. (2021). Social robot navigation tasks: Combining machine learning techniques and social force model. Sensors, 21(21), 7087.
Guillén-Ruiz, S., Bandera, J. P., Hidalgo-Paniagua, A., & Bandera, A. (2023). Evolution of Socially-Aware Robot Navigation. Electronics, 12(7), 1570.
Houshyari, H., & Sezer, V. (2022). A new gap-based obstacle avoidance approach: follow the obstacle circle method. Robotica, 40(7), 2231-2254.
Khan, M. A., Singh, T., Azim, A., Burhanpurkar, V., & Perrin, R. (2021). Dynamic Kalman filter-based velocity tracker for Intelligent vehicle. In IECON 2021–47th Annual Conference of the IEEE Industrial Electronics Society (pp. 1-6). Toronto: IEEE.
Kolar, P., Benavidez, P., & Jamshidi, M. (2020). Survey of datafusion techniques for laser and vision based sensor integration for autonomous navigation. Sensors, 20(8), 2180.
Sharma, V. K., Murthy, L. R. D., & Biswas, P. (2022). Comparing two safe distance maintenance algorithms for a gaze-controlled HRI involving users with SSMI. ACM Transactions on Accessible Computing, 15(3), 27.
Lopac, N., Jurdana, I., Brnelić, A., & Krljan, T. (2022). Application of laser systems for detection and ranging in the modern road transportation and maritime sector. Sensors, 22(16), 5946.
Madake, J., Bhatlawande, S., Solanke, A., & Shilaskar, S. (2023). A Qualitative and Quantitative Analysis of Research in Mobility Technologies for Visually Impaired People. IEEE Access, 11, 82496-82520.
Mallik, M., Panja, A. K., & Chowdhury, C. (2023). Paving the way with machine learning for seamless indoor–outdoor positioning: A survey. Information Fusion, 94, 126-151.
Minnetoglu, O., & Conkur, E. S. (2022). Tight Maneuvering for Path Planning of Hyper-Redundant Manipulators in Three-Dimensional Environments. Applied Sciences, 12(17), 8882.
Nawrat, Z., & Krawczyk, D. (2023). Robot-Based Medicine. Robots in Medicine: Mobile Robots Versus Mobile Decision, Necessity Versus Possibility and Future Challenges. In Azar, A.T., Kasim Ibraheem, I., & Jaleel Humaidi, A. (eds), Mobile Robot: Motion Control and Path Planning (pp. 127-162). Studies in Computational Intelligence, vol 1090. Cham: Springer.
Patoliya, J., Mewada, H., Hassaballah, M., Khan, M. A., & Kadry, S. (2022). A robust autonomous navigation and mapping system based on GPS and LiDAR data for unconstraint environment. Earth Science Informatics, 15(4), 2703-2715.
Pradeep, V., Khemmar, R., Lecrosnier, L., Duchemin, Y., Rossi, R., & Decoux, B. (2022). Self-Supervised Sidewalk Perception Using Fast Video Semantic Segmentation for Robotic Wheelchairs in Smart Mobility. Sensors, 22(14), 5241.
Prandi, C., Barricelli, B. R., Mirri, S., & Fogli, D. (2021). Accessible wayfinding and navigation: a systematic mapping study. Universal Access in the Information Society, 22, 185-212.
Ramaraj, V., Paralikar, A., Lee, E. J., Anwar, S. M., & Monfaredi, R. (2023). Development of a Modular Real-time Shared-control System for a Smart Wheelchair. Journal of Signal Processing Systems, 2023, 1-12.
Sahoo, S. K., & Choudhury, B. B. (2021). A Fuzzy AHP Approach to Evaluate the Strategic Design Criteria of a Smart Robotic Powered Wheelchair Prototype. In Udgata, S.K., Sethi, S., Srirama, S.N. (eds.), Intelligent Systems. Lecture Notes in Networks and Systems (Proceedings of ICMIB 2020) (pp. 451-464), Vol. 185. Singapore: Springer.
Sahoo, S. K., & Choudhury, B. B. (2023a). Wheelchair Accessibility: Bridging the Gap to Equality and Inclusion. Decision Making Advances, 1(1), 63–85.
Sahoo, S. K., & Choudhury, B. B. (2023c). A review of methodologies for path planning and optimization of mobile robots. Journal of process management and new technologies, 11(1-2), 122-140.
Sahoo, S., & Choudhury, B. (2022). Optimal selection of an electric power wheelchair using an integrated COPRAS and EDAS approach based on Entropy weighting technique. Decision Science Letters, 11(1), 21-34.
Sahoo, S., & Choudhury, B. (2023b). Voice-activated wheelchair: An affordable solution for individuals with physical disabilities. Management Science Letters, 13(3), 175-192.
Sezer, V. (2022). An optimized path tracking approach considering obstacle avoidance and comfort. Journal of Intelligent & Robotic Systems, 105(1), 21.
Thirugnanasambandam, K., RS, R., Loganathan, J., Dumka, A., & V, D. (2021). Optimal path planning for intelligent automated wheelchair using DDSRPSO. International Journal of Pervasive Computing and Communications, 17(1), 109-120.
Udupa, S., Kamat, V. R., & Menassa, C. C. (2021). Shared autonomy in assistive mobile robots: a review. Disability and Rehabilitation: Assistive Technology, 18(6), 827-848.
Utaminingrum, F., Johan, A. S. B., Somawirata, I. K., & Septiarini, A. (2022). Descending stairs and floors classification as control reference in autonomous smart wheelchair. Journal of King Saud University-Computer and Information Sciences, 34(8), 6040-6047.
Wang, C., Xia, M., & Meng, M. Q. H. (2020). Stable autonomous robotic wheelchair navigation in the environment with slope way. IEEE Transactions on Vehicular Technology, 69(10), 10759-10771.
Wang, R. H., Zdaniuk, N., Durocher, E., & Wilson, M. G. (2022). Policymaker and stakeholder perspectives on access to assistive technologies in Canada: challenges and proposed solutions for enhancing equitable access. Disability and Rehabilitation: Assistive Technology, 17(1), 61-73.
Wang, Y., Wang, C., Long, P., Gu, Y., & Li, W. (2021). Recent advances in 3D object detection based on RGB-D: A survey. Displays, 70, 102077.
Xia, L., Cui, J., Shen, R., Xu, X., Gao, Y., & Li, X. (2020). A survey of image semantics-based visual simultaneous localization and mapping: Application-oriented solutions to autonomous navigation of mobile robots. International Journal of Advanced Robotic Systems, 17(3), 1729881420919185.
Xu, G., Zhou, W., Qian, X., Zhang, Y., Lei, J., & Yu, L. (2023). THCANet: Two-layer hop cascaded asymptotic network for robot-driving road-scene semantic segmentation in RGB-D images. Digital Signal Processing, 136, 104011.
Yenugula, M., Sahoo, S., & Goswami, S. (2023). Cloud computing in supply chain management: Exploring the relationship. Management Science Letters, 13(3), 193-210.
Zacharaki, A., Kostavelis, I., Gasteratos, A., & Dokas, I. (2020). Safety bounds in human robot interaction: A survey. Safety science, 127, 104667.
Zhang, X., Xu, G., Mou, X., Ravi, A., Li, M., Wang, Y., & Jiang, N. (2019). A convolutional neural network for the detection of asynchronous steady state motion visual evoked potential. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(6), 1303-1311.
Zheng, S., Wang, J., Rizos, C., Ding, W., & El-Mowafy, A. (2023). Simultaneous Localization and Mapping (SLAM) for Autonomous Driving: Concept and Analysis. Remote Sensing, 15(4), 1156.